AP CALCULUS BC Unit 7 Outline – Applications of Integration

DATE	CONCEPT		IN-CLASS SAMPLE PROBLEM	AS	
11/6	ESTIMATING AREA	Ex. 1 Using the graph of $f($	Ex. 1 Using the graph of $f(x)$, approximate each definite integral using the indicated		
11/6	USING KIEMANN SUMS	method.			
			6 7 8 9 10 11		
		Definite Integral	Method	Approximation	
		$\int_{3}^{9} f(x) dx$	LRAM ₃		
		$\int_{0}^{9} f(x) dx$	RRAM ₄		
		$\int_{-2}^{4} f(x) dx$	TRAP ₃		
		 Ex. 2 Approximate the area as subintervals of equal width. a) LRAM4 b) RRAM4 c) MRAM4 d) TRAP4 For (a), (b), and (d), explain a Give a reason for your answer 	under $f(x) = x^2 + 1$ on the in if each approximation is an ove er.	tterval [0,2] using 4	
AP MULI	IPLE CHOICE				
		x 0 2 4	6		
		$f(x) \qquad 4 \qquad k \qquad 8$	12		
The func	The function f is continuous on the closed interval $[0, 6]$ and has the values given in the table above.				
The trape	ezoidal approximation fo	or $\int_0^6 f(x) dx$ found with 3 subint	tervals of equal length is 52. V	Vhat	
is the val	ue of k ?				
(A) 2	(B) 6 (C) 7	(D) 10 (E) 14			
HOMEWO	DRK	Worksheet 49			

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
	DEFINITE INTEGRAL AS A	Rewrite the definite integral as a limit of a Riemann Sum
11/7	RIEMANN SUM	Ex. 1 $\int_0^{\pi} \sin x dx$ Ex. 2 $\int_2^6 \frac{1}{5} x^2 dx$ Ex. 3 $\int_1^e \ln x dx$
		Rewrite the limit of a Riemann sum as a definite integral
		Ex. 4 $\lim_{n \to \infty} \sum_{i=1}^{n} \ln\left(2 + \frac{5i}{n}\right) \cdot \frac{5}{n}$ Ex. 5 $\lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{4 + \frac{2i}{n}} \cdot \frac{2}{n}$
		Ex. 6 $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{12k}{n} \cos\left(1 + \frac{4k}{n}\right) \cdot \frac{4}{n}$ Ex. 7 $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{10i}{n} \left(\sqrt{1 + \frac{5i}{n}}\right) \cdot \frac{5}{n}$

AP MULTIPLE CHOICE

The definite integral $\int_0^4 \sqrt{x} \, dx$ is approximated by a left Riemann sum, a right Riemann sum, and a trapezoidal sum, each with 4 subintervals of equal width. If *L* is the value of the left Riemann sum, *R* is the value of the right Riemann sum, and *T* is the value of the trapezoidal sum, which of the following inequalities is true?

(A) $L < \int_0^4 \sqrt{x} \, dx < T < R$ (B) $L < T < \int_0^4 \sqrt{x} \, dx < R$ (C) $R < \int_0^4 \sqrt{x} \, dx < T < L$ (D) $R < T < \int_0^4 \sqrt{x} \, dx < L$

Homework	Worksheet 50

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
	THE ACCUMULATION	Find the derivative of each function:	
11/8	FUNCTION AND ITS DERIVATIVE (FTC 2)	Ex. 1 $g(x) = \int_{\sin x}^{\cos x} \ln t dt$ Ex. 2 $g(x) = \int_{x^3}^{e^x} \tan t dt$	
		Notes Handout	
HOMEWORK		Worksheet 51	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
	INTERPRETING	Notes Handout
11/12	BEHAVIOR OF	
	ACCUMULATION	
	FUNCTIONS INVOLVING	
	AREA	
Homework		Worksheet 52

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
11/13	AVERAGE VALUE OF A Function	Ex. 1 Find the average value of $f(x) = 5x^4 + 3x^2$ on the interval $-1 \le x \le 2$.
11,15	FUNCTION	Ex. 2 Find the average value of $f(x) = \sin x$ on the interval $[0, \pi]$.
		Ex. 3 Find the average value of $f(x) = \frac{1}{x}$ on the interval $[e, 2e]$.
		Ex. 4 Find the average value of $y = 3x^2 + 2x$ on the interval $\begin{bmatrix} -1, 2 \end{bmatrix}$

AP MULTIPLE CHOICE

P

The rate at which water is sprayed on a field of vegetables is given by $R(t) = 2\sqrt{1 + 5t^3}$, where *t* is in minutes and R(t) is in gallons per minute. During the time interval $0 \le t \le 4$, what is the average rate of water flow, in gallons per minute?

(A) 8.458	(B) 13.395	(C) 14.691	(D) 18.916	(E) 35.833	
HOMEWORK		Worksheet 53			

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS	
11/14	PARTICLE MOTION USING DEFINITE INTEGRALS	Notes Handout	
AP MULT	IPLE CHOICE		
A particle If the point $(A) -\frac{1}{2}$	A particle moves along the x-axis so that at any time $t \ge 0$, its velocity is given by $v(t) = \sin(2t)$. If the position of the particle at time $t = \frac{\pi}{2}$ is $x = 4$, what is the particle's position at time $t = 0$? (A) $-\frac{1}{2}$ (B) 2 (C) 3 (D) 5 (E) 8		
HOMEWO	RK	Worksheet 54	

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
	QUIZ	Riemann Sums, Average Value, Accumulation Functions
11/15		
HOMEWORK		Have a Happy Thanksgiving!!

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS		
11/18	INTEGRAL AS A NET Change	Notes Handout		
	RATES OF CHANGE			
AP MULT A cup of temperat R(t) = -	AP MULTIPLE CHOICE A cup of tea is cooling in a room that has a constant temperature of 70 degrees Fahrenheit (°F). If the initial temperature of the tea, at time $t = 0$ minutes, is 200°F and the temperature of the tea changes at the rate $R(t) = -6.89e^{-0.053t}$ degrees Fahrenheit per minute, what is the temperature, to the nearest degree, of the tea			
(A) 175	°F (B) 130°F	(C) $95^{\circ}F$ (D) $70^{\circ}F$ (E) $45^{\circ}F$		
Номеwo	DRK	Worksheet 55		

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
	INTEGRAL AS A NET	AP – Free Response Questions
11/19	CHANGE	
	RATES OF CHANGE	
HOMEWORK		Worksheet 56

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS		
	AREA BETWEEN TWO	Examples from Homework #1, 5, and 9		
11/20	CURVES			
AP MULT	TIPLE CHOICE			
A-				
What is t	What is the area of the region enclosed by the graphs of $y = \frac{1}{2}$ and $y = x^2 = \frac{1}{2}$			
What is	$1+x^2$ 3			
(A) 0.78	86 (B) 0.791	(C) 1.582 (D) 1.837 (E) 1.862		
HOMEWO	DRK	Worksheet 57		

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS			
11/21	VOLUME (KNOWN CROSS Section)	Notes Handout			
AP MULTIPLE CHOICE					
Let <i>R</i> be the region in the first quadrant bounded above by the graph of $y = \ln(3 - x)$, for $0 \le x \le 2$. <i>R</i> is the base of a solid for which each cross section perpendicular to the <i>x</i> -axis is a square. What is the volume of the solid?					
(A) 0.44	42 (B) 1.029	(C) 1.296 (D) 3.233 (E) 4.071			
Homework		Worksheet 58			

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS		
11/22	VOLUME OF SOLIDS Formed by Rotation	Notes - Handout		
AP MULTIPLE CHOICE A vase has the shape obtained by revolving the curve $y = 2 + \sin x$ from $x = 0$ to $x = 5$ about the <i>x</i> -axis, where <i>x</i> and <i>y</i> are measured in inches. What is the volume, in cubic inches, of the vase? (A) 10.716 (B) 25.501 (C) 33.666 (D) 71.113 (E) 80.115				
HOMEWO	PRK	Worksheet 59		

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS
12/2	VOLUME OF SOLIDS Formed by Rotation The Shell Method	Notes - Handout
HOMEWORK		Worksheet 60

DATE	CONCEPT	IN-CLASS SAMPLE PROBLEMS			
12/3	ARC LENGTH	Notes - Handout			
	~				
AP MULTI	PLE CHOICE				
The length of the curve $y = x^4$ from $x = 1$ to $x = 5$ is given by (A) $\int_1^5 \sqrt{1 + 4x^3} dx$ (B) $\int_1^5 \sqrt{1 + x^4} dx$ (C) $\int_1^5 \sqrt{1 + 4x^6} dx$ (D) $\int_1^5 \sqrt{1 + 16x^6} dx$ (E) $\int_1^5 \sqrt{1 + x^8} dx$					
		x 1 3 5 7			
		f(x) 4 6 7 5			
	-	f'(x) 2 1 0 -1			
The table above gives selected values for a differentiable function f and its first derivative. Using a left Riemann sum with 3 subintervals of equal length, which of the following is an approximation of the length of the graph of f on the interval [1, 7]?					
(A) 6	(B) 34 (C) $2\sqrt{2}$	$\overline{3} + 2\sqrt{2} + 2$ (D) $2\sqrt{5} + 2\sqrt{2} + 2$ (E) $2\sqrt{5} + 4\sqrt{2} + 2$			
HOMEWOR	RK	Worksheet 61			

12/6 - Review

12/7 – Unit Exam